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Abstract

Suppose (X, S) is a S- metric space and P, T, I and J are selfmaps of X. If these four maps and the space X satisfy
certain conditions, we shall prove that they have a unique common fixed point in this paper. As a consequence we
deduce a common fixed point theorem for four selfmaps of a complete S- metric space. Further, we show that a
common fixed point theorem for four selfmaps of a metric space proved by Brain Fisher ([5]) follows as a particular
case of the theorem.
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1. Introduction and Preliminaries:

One of the fields that many researchers are actively studying is fixed point theory, particularly in analysis. Fixed
point theory can be applied in a variety of fields, including biology, computer science, engineering, economics, etc.
The Banach Contraction Principle is known as one of the most important findings in fixed point theory.

On the other hand, some authors are interested and have tried to give generalizations of metric spaces in different
ways. In 1963 Gahler [6] gave the concepts of 2- metric space further in 1992 Dhage [2] modified the concept of 2-
metric space and introduced the concepts of D-metric space also proved fixed point theorems for selfmaps of such
spaces. Later researchers have made a significant contribution to fixed point of D- metric spaces in [1], [3], and [4].
Unfortunately almost all the fixed point theorems proved on D-metric spaces are not valid in view of papers [7], [8]
and [9]. Sedghi et al. [10] modified the concepts of D- metric space and introduced the concepts of D*- metric space
also proved a common fixed
point theorems in D*- metric space.

Recently, Sedghi et al [11] introduced the concept of S- metric space which is different from other space and
proved fixed point theorems in S-metric space. They also gives some examples of S- metric spaces which shows that
S- metric space is different from other spaces. In fact they gives following concepts of S- metric space.

Definition 1.1 ([11]): Let X be a non-empty set. An S-metric space on X is a function S: X3 — [0, o) that
satisfies the following conditions, for each x,y, z, a € X
(1) S(x,y,2)>0
(i1) S(x,y,z)=0ifand only if x =y =z.
(iii) S(x,y,2) <S(x,X,a) + S(y,y,a) + S (z, z, a)
The pair (X, S) is called an S—metric space.
Immediate examples of such S-metric spaces are:

Example 1.2: Let R be the real line. Then S(x, y, z) = |x —y| + |y — z| + |z — x| for each
X, y,z ER is an S-metric on R. This S-metric is called the usual S-metric on R.

Example 1.3: Let X = R?, d be the ordinary metric on X.

Put S(x, y, z) = d(x, y) + d(y, z) + d (z, x) is an S- metric on X. If we connect the points X, y, z by a line, we have a
triangle and if we choose a point a mediating this triangle then the inequality S(x, y, z) < S(x, X, a) + S(y, y, a) + S (z,
z, a) holds. In fact
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S(x,y,2) =d(x,y) +d(y, z) + d (z, x)
<d(x,a) +d(a, y) +d (y,a) + d(a, z) + d(z, a) + d (a, x)
=S(x,x,a) +S(y,y,a) + S (z, z, a)

Example 1. 4: Let X =R"and || . || a norm on X, then S(x, y, z) = ||x — z|| + ||y — Z|| is an S-metric on X.

Remark 1. 5: it is easy to see that every D*-metric is S-metric, but in general the converse is not true, see the following
example.

Example 1. 6: Let X =R"and || . || a norm on X, then S(X, y, z) = ||y + z — 2x|| + ||y — z|| is an S-metric on X, but it
is not D*-metric because it is not symmetric.

Lemma 1. 7: In an S—metric space, we have S(x, X, y) = S(y, ¥, X).
Proof: By the third condition of S-metric, we get
S(x, X, ¥) < S(x, X, X) + S(%, X, X) + S(¥, ¥, X) = S(¥, ¥, X)...... (1)
and similarly
S(y, ¥, X) <S(y, ¥, ¥) T S(¥, ¥, ¥) + S(X, X, y) = S(X, X, y)....... (2)
Hence, by (1) and (2), we obtain S(x, X, y) = S(y, ¥, X).

Definition 1.8: Let (X, S) be an S-metric space. For x €X and r > 0, we define the open ball Bs(x, r) and closed ball
Bs[x, r] with a center x and a radius r as follows
Bs(x,1)={y € X; S(x,y,y) <1}
Bs[x, 1] ={y € X; S(x, y,y) <71}
For example, Let X =R. Denote S(x,y,z)=|y+z—-2x|+|y—z]| for all x, y, z ER. Therefore Bs(1, 2) = {y ER;
S(y, y, 1) <2}
={yeR;|y—-1]<1} =(0,2).

Definition 1.9: Let (X, S) be an S—metric space and A € X.
1) Ifforevery x € A, there is a r > 0 such that Bs(x, r) € A, then the subset A called an open subset of X
2) Ifthereis ar> 0 such that S(x, x, y) <r for all x, y € A then A is said to be S—bounded.
3) A sequence {X,} in X converge to x if and only if S(Xn, Xn, X) — 0 as n —oo. That is for each € > 0, there
exists no € N such that for all n > ng, S(Xx, Xa, X) < € and we denote this by lim x, =x

n —»oo

4) A sequence {x,} in X is called a Cauchy sequence if for each € > 0, there exists no € N such that S(xn, X,
Xm) < € for eachm , n>ng

5) The S—metric space (X, S) is said to be complete if every Cauchy sequence is convergent sequence.

6) Let 1 be the set of all A c X with x € A if and only if there exists r > 0 such that Bs(x, r)cA. Then tis a
topology on X (induced by the S-metric S).

7) If (X, 1) is a compact topological space we shall call (X, S) is a compact S—metric space.

Lemma 1. 10 ([11]): Let (X, S) be an S-metric space. If r > 0 and x € X, then the open ball Bs(x, r) is an open subset
of X.

Lemma 1. 11 ([11): Let (X, S) be an S-metric space. If the sequence {X»} in X converges to X, then X is unique.

Lemma 1. 12 ([11]): Let (X, S) be an S-metric space. If the sequence {X,} in X converges to X, then {x,} is a Cauchy
sequence.

Lemma 1. 13 ([11]): Let (X, S) be an S-metric space. If there exists sequences {Xn} and {yn} such that lim x, = x
n —oo
and lim y, =y, then lim S(x,X,yn) = S(X, X, y).
n —oo n—oo
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Lemma 1. 14: Let (X, d) be a metric space. Then we have
1. Suax,y,2z)=d(x,y)+d(y, z) + d(z x) for all X, y, z € X is an S-metric on X
2. xp—xin(X,d)ifand only if X; = x in (X, Sq)
3. {Xa} is a Cauchy sequence in (X, d) if and only if {x,} is a Cauchy sequence in (X, Sq)
4. (X, d)is complete if and only if (X, Sq) is complete

Proof: (1) See [ Example (3), Page 260]

(2) x, = x in (X, d) if and only if d(xy, x) = 0, if and only if Sq(Xn, Xn, X) = 3d(Xn, X) = 0 that is, x, = x in (X, Sq)

(3) {Xa}is a Cauchy in (X, d) if and only if d(Xn, Xm) = 0 as n, m — oo, if and only if Sd(Xn, Xn, Xm) = 3d(Xn, Xm)
- 0n, m— oo, thatis, {Xn} is Cauchy in (X, Sq)

(4) It is a direct consequence of (2) and (3)

Notation: For any selfmap T of X, we denote T(x) by Tx.

If P and Q are selfmaps of a set X, then any z € X such that Pz = Qz = z is called a common fixed point of P and Q.
Two selfmaps P and Q of X are said to be commutative if PQ = QP where PQ is their composition PoQ defined by
(PoQ) x =PQx for all x € X.

Definition 1.15: Suppose P and Q are selfmaps of a S—metric space (X, S) satisfying the condition Q(X) € P(X). Then
for any %o € X, Qxo € Q(X) and hence Qxo € P(X), so that there is a x; € X with Qxo= Px;, since Q(X) € P(X). Now
Qx; € Q(X) and hence there is a x, € X with Qx» € Q(X) € P(X) so that Qx; = Px,. Again Qx; € Q(X) and hence Qx,
€ P(X) with Qx, = Px3. Thus repeating this process to each xo € X, we get a sequence {X,} in X such that Qx, = Pxp+|
for n > 0. We shall call this sequence as an associated sequence of X, relative to the two selfmaps P and Q. It may
be noted that there may be more than one associated sequence for a point x¢ € X relative to selfmaps P and Q.

Let P and Q are selfmaps of a S-metric space (X, S) such that Q(X) € P(X). For any x, € X, if {X»} is a sequence in
X such that Qx,= Pxn+1 for n > 0, then {x,} is called an associated sequence of x relative to the two selfmaps P
and Q.

Definition 1.16: A function @: [0, ©) — [0, «) is said to be a contractive modulus, if @ (0)=0and @ (t) <t
fort>0.

Definition 1.17: A real valued function @ defined on X € R is said to be upper semi continuous, if lim sup @(t,)
n—-oo

< @ (t) for every sequence {t,} in X with t, —» tasn — oo,

Definition 1.18: If P and Q are selfmaps of a S-metric space (X, S) such that for every sequence {x,} in X with
lim Px, = lim Qx, =1, we have
n—-oo

n-oo

lim S(PQxxn, QPxn, QPx,) = 0, then we say that P and Q are compatible.
n—-oo

The Main Results:

2.1 Theorem: Let P, T, I and J be selfmaps of a S- metric space (X, S) satisfying the conditions

(1) P(X) € J(X) and T(X) € I(X)
(i) S(Px, Ty, Ty) <O (ux,y)) forallx,y € X

where @ is an upper semi continuous and contractive modulus

and
(1)’ u(x, y) = max {S(Ix, Jy, Jy), S(Ix, Px, Px), S(Jy, Ty, Ty)} forallx,y € X
(iii) one of P, T, I and J is continuous

and
(iv) the pairs (P, I) and (T, J) are compatible
Further, if
(iv) there exists a point xo €X and an associated sequence {X,} relative to the four selfmaps such that Pxo, Txi,

Px», Txs, ....., PXon, TXon41, ..... converge to some z € X,
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Then P, T, I and J have a unique common fixed point z € X. Also z is the unique common fixed point for the pair P
and I; and for the pair T and J.
Before we give proof of theorem, we establish some lemmas.

1.1. 1 Lemma: Suppose P, T, I and J are selfmaps of a S-metric space satisfying the conditions (i), (i), and (v) of
theorem 2.1 and pair (P, I) is compatible. Then
(a) limp_e u(lxm Xon+1 ) = S(Iz, z, z) whenever I is continuous
and
(b) limp_ e u(szH’ x2n+1) = S(Pz, z, z) whenever P is continuous
Proof: In view of (v), the sequences {Px2,} and {Tx2n+1} converge to z € X and since  Pxan = JXon+1 and TXon+1
= IXon+2 We have
(2. 1. 2) Pxan, TXon+1, [X2n, JX2n+1 — z as n — oo,
(a) IfIis continuous, then we have
(2.1.3) I’xpy — Iz, IPxp,— Iz asn — o
Also compatible of the pair (P, I) implies
(2.14) rl]l_l;l;lo S(PIxon, IPXon, IPX2n) =0

From (2. 1. 3) and (2. 1. 4), we get that
(2.1.5) PIxy, —» Iz asn— .
Now, from (ii)’, we have
(2. 1. 6) u(IX2n, Xon+1) = max {S(I*Xon, JXan+1, JXont1), S( >X2n, SIXon, SIX2n),
S(IX2n, TXon+1, TXon+1)}
Letting n to oo in (2. 1. 6) and using the continuity of S, (2. 1. 2), (2. 1. 3) and (2. 1. 5) we get
lim,_, u(lxm X2n+1) =max {S(z, z, z), S(Iz, z, z), S(z, z, )}
=S(Iz, z, z).
This proves part (a) of the lemma.
(b) If P is continuous, then, by (2. 1. 2), we have
(2. 1. 7) P?x3, — Pz, PIxo,— Pz as n — .
and therefore in view of (2. 1. 4) we get
(2.1.8) IPx2, = Pz asn— oo.
Now we have
(2. 1. 9) W(Pxon, Xons1) = max {S(IPXan, JXan+1, JX2nt1 ), S(IPX2n, P?X2n, P?Xan),
S(Ix2n+1, TXon+1, TXon+1)}
In which on letting n to oo and using (2. 1. 2), (2. 1. 7), (2. 1. 8) and continuity of S we get lim,,_, u(PXZn’ Xont1 ) =
max {S(Pz, z, z), S(Pz, z, z), S(z, z, )}
= S(Pz, z, z). proving part (b) of the lemma.
(2. 1. 10) Lemma: Suppose P, T, I and J are selfmaps of a S- metric space(X, S) satisfying the conditions (i), (ii),
and (v) of theorem 2.1 and pair (T, J) is compatible. Then
(a) lim,_ H(sz JXon41 ) = S(z, Jz, Jz) whenever J is continuous
and
(b) lim,_ H(in, TXon41 ) = S(z, Tz, Tz) whenever T is continuous
Proof: (a) IfIis continuous, then we have, in view of (2. 1. 2) that
(2.1.11) %2, — Jz, JTXon+1— JZ asn — o0
Also the pair (T, J) is compatible implies that
(2.1.12) &Lrg S(TJxan+1, ITX20+1, JTX2n+1) = 0
From (2. 1. 11) and (2. 1. 12), we get that
(2.1.13) TIxzu+1 > Jz as n— oo.
Now, from (ii)’, we have
(2. 1. 14) p(Xan, JX2n+1) = max {S(IXan, IXon+1, IXon+1), S(IX2n, PXan, PXon),
S(Jxan+1, TIX2n+1, TIX2n+1)}
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in which on letting n to o; using the continuity of S and (2. 1. 2), (2. 1. 11) and (2. 1. 13) we get
lim, e H(in, ]x2n+1) =max {S(z, Jz, Jz), S(z, z, z), S(Jz, Iz, Jz)}

=S(z, Jz, Jz).
(b) When T is continuous, we have, by (2. 1. 2), that
(2.1.15) T 0411 — Tz, TJXoni1— Tz asn — oo,
from (2. 1. 15) and (2. 1. 12), we get
(2. 1.16) JTx2n+1 = Tz asn— oo.
Now we have
(2. 1. 17) pu(x2n, TXon+1) = max {S(Ixan, JTX2n+1, JTX2n+1), S( X2n, PXon, PXon),

S(ITx2n+1, T*X2n+1, T?X2n+1)}
In which on letting n to oo; using (2. 1. 2), (2. 1. 15), (2. 1. 16) and continuity of S we get lim,,_,, H(in, TXon41 ) =
max {S(z, Tz, Tz), S(z, z, z), S(Tz, Tz, Tz)}
=S(z, Tz, Tz).

Hence the lemma.

2. 2 Prof of Theorem 2. 1: In this section we first prove the existence of a common fixed point in various cases of
the condition (iii) in Theorem 2. 1.
Case(I). Suppose that I is continuous
Taking x = Ixon and y = Xoq+1, in condition (ii) of the Theorem 2. 1, we have
(2. 2. 1) S(PIx2n, TXont1, TXont1) < O (u(Iin, Xont1))-
Also the continuity of S gives
S(z, z, z) = lim S(PIxXyn, TXon+1, TX2n41)
n-oo
Therefore, by Lemma 2. 1. 1, we get
(2.2.2) S(Iz, z, z) = lim sup S(PIX,n, TXon41, TXon41)
n—-oo
< rlli_{{)losup D(pu(Ix2n, Xon+1)
= ® ( 1im sup( u(1Xzn, Xzne1)
=0 ( rlll_{g( R(IX2n) X2n41)
= (S(Iz, z, z))
Thus
(2.2.3) S(z, 1z, 1z) < O(S(z, 1z, 12))
Now we claim that Iz = z. In fact if Iz # z, S(z, Iz, 1z) > 0 so that
® (S(z, z, 2)) < S(Iz, z, z), since O is contractive modulus, which contradicts (2. 2. 3). Therefore 1z = z.
Now the continuity of S gives
S(PZ, z, Z) = lim S(PZ, TX2n+1' TX2n+1)
n—oo
= lim supS(Pz, TxXzn+1, TXon41)
n—oo
using the condition (ii) of Theorem (2. 1) and upper semi continuity of @ in the above we get
(2.2.4) S(Pz, z,z) < lim sup®(u(z, Xzns1)
n—-oo

=@ (Al_)fg3 sup(W(z, Xan+1))
=0 (ALI&(H(Z. X2n+1))

But
limy e H(X2n, X2ns1 ) = lim max {S(Iz, Jxzn+1, Jx2nt1), S(Iz, Sz, Sz),
n-oo
S(IXan+1, TXan+1, TX2nt1)}
=max {S(Iz, z, z), S(Iz, Pz, Pz), S(z, z, z)}
since [z =z, JXon+1 = z and Txon+1 = z as n— oo. Therefore (2. 2. 4) gives
(2.2.5) S(Pz, z, z) < ®(S(Pz, z, 7))
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Now we claim that Pz = z. In fact if Pz # z, S(Pz, z, z) > 0 and by the definition of so that ® we get ® (S(Pz, z, z)) <
S(Pz, z, z), contradicting (2. 2. 5). Hence Pz = z.
Thus we have Pz=1z=z.
Now, since P(X) € J(X), there is a u € X with z = Pz = Ju, for some u € X and we have
Pz =1z =Ju=z. We claim that Tu = z.
In fact if Tu # z, then S(z, Tu, Tu) > 0 and therefore by (ii) of Theorem 2. 1 we get
S(z, Tu, Tu) = S(Pz, Tu, Tu) < O(u(z, u))
= ® (max {S(Iz, Ju, Ju), S(I1z, Pz, Pz), S(Ju, Tu, Tu)}.
= ®(S(z, Tu, Tu)).
since [z =z = Pz = Ju, and this implies
S(z, Tu, Tu) < ® (S(z, Tu, Tu)) < S(z, Tu, Tu), which is a contradiction. Therefore z = Tu.
Hence we have z = Pz = Iz = Ju = Tu. Now taking y,=u for n > 1, it follows that Ty,»Tu =z and Jy, —» Ju=zasn
— o0, Also since the pair (T, J) is compatible we have
r{l_,r?o S(TJyn, JTyn JTyn) = 0, which gives S(TJu, JTu, JTu) = 0 or TJu =JTu that is Tz =Jz. Now by condition (ii) of

Theorem 2. 1 we have

(2. 2.6) S(z, Tz, Tz) = S(Pz, Tz, Tz) < O((z, z))
= ® (max {S(Iz, Jz, Jz), S(Iz, Pz, Pz), S(Jz, Tz, Tz)}.
=0 (S(z, Tz, Tz)).
since Iz =z =Pz =Ju and Jz = Tz. Thus (2. 2. 6) gives
S(z, Tz, Tz) < ® (S(z, Tz, Tz)); which, as before, forces Tz = z.
Hence z=Pz =1z =Jz = Tz. Thus z is a common fixed point of P, T, I and J.
Case (ii): Suppose that J is continuous
Taking x = Xonand y = Jxon+1, in condition (ii) of the Theorem 2. 1, we have
(2. 2. 7) S(Pxan, TIxon+1, TIXont1) < @ (W(X2n, JX2n+1)) in Which letting n — oo, and using the facts Px,, = z and
TJxon+1 = Jz as n— oo(since the pair (T, J) is compatible and J is continuous), we get
(2. 2.8) S(z, Jz, Jz) = lim S(Pxy,, TJXzn41, TJXon41)
n—oo
= rlli_{{)losup S(Pxzn, TJXzn+1, TIX2n+1)
S rl)i_{glosupQD( H(X2n, JX2n41)
=d( Ai—{gosup( H(X2n, JX2n+1)
=d( 111_{{)10( H(X2n, JX2n41)
Now, in view of (a) of Lemma 2. 1. 10, we get
S(z, Jz, Jz) < ©(S(z, Jz, Jz)), which leads to a contradiction if Jz # z. Therefore Jz = z.
Now the continuity of S gives
S(z, Tz, Tz) = lim S(Px,,, Tz, Tz)
n—-oo
= lim supS(Px;,, Tz, Tz)

n—»oo

But, condition (ii) of Theorem (2. 1) and upper semi continuity of ® give

(2.2.9) S(z, Tz, Tz) < 31330 sup®(u(xXyn, z)

= @ (lim sup(u(xzn, 2))

= @ (lim (u(xzn, 2))
Now since p(xan, z) — S(z, Tz, Tz) as n— o from condition (ii) of Theorem 2. 1. and since ® is a contractive
modulus,(2. 2. 9) gives S(z, Tz, Tz) < ®(S(z, Tz, Tz)), from which we get a, contradiction if Tz # z. Therefore Tz =
Z.
Hence we have
2.2.10) Tz=Jz=1z.
Now, since T(X) € I[(X), there isau” €X with z=Tz =Iv/,
Again by condition (ii) of Theorem 2. 1 we get
(2.2.11) S(Pu', z, z) =S(Pu’, Tz, Tz) < d(W', z))
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= ® (max {S(Iv', Jz, Jz), S(Iv’, Pu’, Pu"), S(Jz, Tz, Tz)}.
=® (S(Su/, z, z)).
since Jz=Tz=z=1Iu'. That is
S(Pu’, z, z) < @ (S(Pu/, z, z)), which is a contradiction if Pu’ # z. Therefore z = Pu’,
That is, Pu’ = Iu’ =z. Taking y,= u’ for n > 1, we find that Py, — Pu’ and Iy, — Iu’ as n — oo. Now using the
compatibility of the pair (P, I) we have
r11_)1{.10 S(Plyy,, 1Py, IPy,) =0, which gives S(PIu’, IPu’, IPu’) = 0 or PIu" = IPu'.
Hence Sz =1z. Again by condition (ii) of Theorem 2. 1 we have
(2.2.12) S(Pz, z, z) = S(Pz, Tz, Tz) < ®((z, z)) = D(S(Pz, z, z)). Since W(z, z) = S(Pz, z, z).
Now (2. 2. 13) leads to a contradiction if Pz # z. Therefore Pz = z. Hence z =Pz =1z = Jz = Tz, showing that zis a
common fixed point of P, T, I and J.
Case (iii): Suppose that P is continuous
Taking x = Px,and y = Xon+1, in condition (ii) of the Theorem 2. 1, we have
(2.2.13) S(P2X2n, Txont1, TXont1) < @ (u(Pin, Xont1))-
Since P*xzy — Pz as n — oo (by the continuity of P) TXoni1 — z as n — oo, letting n — oo in (2. 2. 13), we get
(2.2.14) S(Pz, z,z) = r{i_)r?osup S(P*X3n, TXan41, TX2nt1)

= lim sup S(P*Xzn, TXzn+1, TXzn+1)

n—-oo
< Ai_{?osupq)( H(PXZn' X2n+1))
=0 ( Amsup( H(SXzn, X2n41)
=d( 111_{510( H(Px2n, Xan+1)-
Now, in view of (b) of Lemma 2. 1. 1, (2. 2. 14) gives
S(Pz, z, z) < O(S(Pz, z, z)), which is a contradiction if Pz # z, by the definition of ®. Therefore Pz = z.
Now, since P(X) € J(X), there is a v € X with z= Pz =Jv,
Now the continuity of S gives
S(z, Tv, Tv) = lim S(Px,,, Tv, Tv)
n—oo
= lim supS(Px,,, Tv, Tv)
n—-oo

so that condition (ii) of Theorem 2. 1 and upper semi continuity of ® give
(2.2.15) S(z, Tv, Tv) < lim sup®(u(xz,, V)
n—-oo

= ® (lim sup(i(xzn, V)

= ® (lim (Cxzn V)
Since p(Xan, V) — S(z, Tv, Tv), as n— o (from condition (ii) of Theorem 2. 1, (2. 2. 15) gives S(z, Tv, Tv) < ®(S(z,
Tv, Tv), from which we get a contradiction if z # Tv. Therefore z=Tv
Thus we have Tv =Jv = z.
Now taking y,=v forn> 1, we get Ty, — Tv and Jy, — Jvas n — o. Also since the pair (T, J) compatibility we

have
lim S(TJyy, JTyy, JTy,) = 0, which gives S(TJv, JTv, JTv) =0 or TJv =JTv, hence Tz = Jz
n—»oo
Now the continuity of S gives
S(z, Tz, Tz) = lim S(Px,,, Tz, Tz)

n—-oo

= lim supS(Px,,, Tz, Tz)

n—oo
But, condition (ii) of Theorem (2. 1) and upper semi continuity of ® give
(2.2.16) S(z, Tz, Tz) < lim sup®(u(xXz,, Zz)

n—oo

= @ (lim sup(u(xzn, 2))
= @ (1im (W(zn, 7))
Since W (Xon, z) — S(z, Tz, Tz) as n— o from condition (ii) of Theorem 2.1, (2. 2. 16) gives S(z, Tz, Tz) < ®(DS(z,

Tz, Tz)), and this leads to a contradiction if Tz # z. Hence Tz =z.

Also since T(X) € I(X) implies there is a u”e X with z=Tz = Iu". Now from condition(ii) of Theorem 2. 1, we have
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(2.2.17) S(Pu", z, z) = S(Pu", Tz, Tz) < d(uw(u", z))
Since u(u", z) = S(Pu"”, Tz, Tz), from (ii)’ of Theorem 2. 1, (2. 2. 17) gives
S(Pu", z, z) < ® (S(Pu", z, z)), and this will be a contradiction if Pu” # z. Therefore
z=Pu". Hence Pu” =Iu" = z. Also, since the pair (P, I) is compatible, we have 31_1)1; S(Plyy,, IPy, IPy,)=0.

Taking y,=u" for n > 1, we get S(PIu”, IPu”, IPu") = 0. Therefore PIu” =[Pu” or Pz=1z. Hence z=Pz=1Iz=Jz =
Tz, showing that z is a common fixed point of P, T, I and J.

Case(iv): Finally suppose that T is continuous

Taking x = Xanand y = TXoq+1, in condition (ii) of the Theorem 2. 1, we have

(2. 2. 18) S(Px2n, T%0ur1, TXo0+1) < O (W(X20, TX2041)).

Since Pxon —z and T? X2n+1 — Tz as n — oo(by the continuity of T) letting n to o in (2. 2.18) we get

(2.2.19)S(z, Tz, Tz) = Illi_r){)losup S(PX2n, T*Xont1, T?Xon41)

= lim sup S(Pxz, TZX2n+1, T?Xzn+1)

n—oo

S AHEOSUPCD( H(X2n, TX2n+1)

=0 (Ai_r)glosuP( H(X2n, TXan+1 )

=d( 121_{120( H(Xzn, TXan41)-
Which, in view of (b) of Lemma 2. 1. 1, (2. 2. 10) gives
S(z, Tz, Tz) < ®(S(z, Tz, Tz)), and this will be contradiction if Tz # z, by the defination of ®. Therefore Tz = z.
Now, since T(X) € I(X), there is a v’ € X with z=Tz =1V,
Now the continuity of S gives
S(PV’, z, Z) = lim S(PV', TX2n+1, TX2n+1)

n—-oo

= lim supS(Pv', TXyns1, TXont1)

n—oo
Now condition (ii) of Theorem 2. 1 and upper semi continuity of ® give
(2.2.20) S(Pv', z,z) < lim sup ®(uW(v',X3n41))
n—-oo
= ® (lim Sup(H(V', Xzns1))
=@ (lim (U(V', Xzn1))
Since W(v', Xant1) = S(PV', z, z), as n— oo (from condition (ii) of Theorem 2. 1), (2. 2. 20) gives S(Sv’, z, z) < O(S(PV/,
z, z), and this leads to a contradiction if Sv'#z. Therefore Sv' =z.
Hence Pv'=1v'=z.
Since the pair (P, I) is compatibility, we have lim S(Ply,, IPy, IPy,)=0.
n—oo
Taking y,= v’ forn > 1, we get S(PIv', IPv', IPv') =0 (since Py, —PV', Iy, — Iv'
as n — o). Therefore PIv' = IPv' or Pz = Tz.
Now the continuity of S gives
S(Pz, z, z) = lim S(Pz, TXzn+1, TXont1)
n—oo
= lim supS(Pz, Txyn+1, TXons1)
n—-oo

Again, by condition (ii) of Theorem 2. 1 and upper semi continuity of ® gives
(2.2.21) S(Pz, z,2) < 31330 sup®(u(z, Xzns1)
=0 (31_210 sup(i(z, Xzns1))
=0 (AH&(H(Z: Xan+1) )
Since p (z, Xon+1) — S(Pz, z, z) as n— o from condition (ii) of Theorem 2.1,(2. 2. 21) gives S(Pz, z, z) < ®(S(Pz, z,
z)), and this leads to a contradiction if Pz # z. Therefore Pz=z. Hence Pz=1z=Tz =z
Now since P(X) € J(X), this implies there is a v"’e X with z =Pz = Jv”. Now from condition (ii) of Theorem 2. 1,
we have
(2. 2.22) S(z, Tv", Tv") = S(Pz, Tv", TVv"") < ®(W(z, v"))
Since W(z, v'") = S(z, Tv", Tv"), from (ii)’ of Theorem 2. 1, (2. 2. 22) gives
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S(z, TV, Tv") £ ® (S(z, Tv", Tv")), and this will be a contradiction if Tv" # z. Therefore z=Tv". Hence Tv" =
Iv" =2z. Also, since the pair (T, J) is compatible, we have lim S(TJyy, JTyy,, JTy,) = 0. Taking yn=v" forn> 1, we
n—-oo

get S(TIV", JTv", JTv") = 0. Therefore TIv" =JTv" or Tz =Jz. Therefore z =Pz =1z =Jz = Tz. Hence z is a common
fixed point of P, T, I and J.
Now we prove the uniqueness of the common fixed point
If possible let z' be another common fixed point of S, T, I and J. Then from condition (ii) of Theorem 2. 1, we have
(2.2.23) S(z, 7', 2') =S(Pz, TZ', TZ") < d(W(z, z)).
Since W(z, z') = S(z, ', Z) from (ii)’ of Theorem 2. 1, (2. 2. 23) gives
S(z, 7', 2') < ©(S(z, z', Z')) and this will be contradiction if z # z'. Therefore z = z'. Thus z is the unique common fixed
point of P, T, I and J.

To prove that z is the unique common fixed point of P and I; and of T and J. Let w be another common fixed point
of Pand I. Then z=Pz=Tz=1Iz=Jz and w = Iw = Pw.
Now, from condition (ii) of Theorem 2. 1, we have
(2.2.24) S(z, w, w) = S(W, z, z) = S(Pw, Tz, Tz) < O(W(W, z)).
Since W(w, z) = S(w, z, z) (from (ii)’ of Theorem 2. 1), (2. 2. 24) gives
S(w, z, z) < O(S(w, z, z)), and this will be a contradiction if w # z. Therefore w = z. Thus z is the unique common
fixed point of P and I. Similarly we can prove that z is the unique common fixed point of T and J. Thus the Theorem
2. 1 is completely proved.

2.3 A Common Fixed Point Theorem for Four Selfmaps of a Complete S- metric space:
Before we prove the main result of this section, we prove the following lemma:

2.3.1 Lemma: Let (X, S) be a S- metric space and P, T, I and J be selfmaps of X such that
(i) P(X) < JX)and T(X) € I(X)
(i) S(Px, Ty, Ty)<c.u(x,y) forallx,y € X
where 0 <c¢ <1 and
n(x, y) =max {S(Ix, Jy, Jy), S(Ix, Px, Px), S(Jy, Ty, Ty)}
Further, if
(i) (X, S)is complete.
Then for any x¢ € X and for any of its associated sequence {X,} relative to the four selfmaps, such that Pxo Tx;, Pxo,
Tx3... ,PXon, TXont1, ..... converges to some z € X.

Proof: Suppose P, T, I and J are selfmaps of a S-metric space (X, S) for which the conditions (i) and (ii) hold.
Let xo € X and {x,} be an associated sequence of xo relative to four selfmaps. Then, since PxXzy, = JXon+1 and TXont1
= Ixons2 for n > 0. Note that
W(X2n, Xon+1) = max {S(IXan, JX2n+1, IXon+1), S(IX2n, PX2n, PX2n), S(IX2n, TX2n+1, TXon+1)}

=max {S(IX2n, Px2n, Px2n), S(IX2n, PXon, PX2n), S(JX2n+1, TXon+1, TXont1)}

=max {S(IX2n, PX2n, PX2n), S(JX2n+1, TXont1, TX2n+1)}
W(X2n, Xont1) = max { S(TXan-1, PXon, PX2n), S(PXan, TXon+1, TXont1)}
This together with (ii) of Theorem 2. 1 gives

S(Pxan, TXant1, TX2nt1) < €. lW(X2n, X2n+1)
<c. max { S(Tx2n-1, PX2n, PX2n), S(PX2n, TXon+1, TXon+1)}.

Since 0 < ¢ < 1, it follows from the above inequality that
max { S(Txzn-1, PXan, PX2n), S(PX2n, TXon+1, TXon+1)} = S(TX2n-1, PX2n, PXon)

Therefore ~ S(PXan, TXon+1, TX2n+1) < €. S(TX2n-1, PXon, PXon) ........ (A)
Similarly, we can prove
S(Txa2n-1, PXan, Pin) <c. S(PXZn_z, Tx2n-1, Tin_l) ........ (B)

From (A) and (B), we get
S(PxXa2n, TX2nt1, TXon+1) < € S(PXan-2, TXan-1, TXan-1)
<c* S(Pxan4, TXn3, TX2n:3)
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<c? S(Pxo,Tx1,Tx;) — 0
Since ¢* — 0 as n — oo (because ¢ < 1). Hence the sequence Pxo, Tx1, Pxs, TX3.... PXon, TXons1 is a Cauchy
sequence in (X, S) and since it is complete, it converges to a point say z € X, proving lemma.

2.3.2 Remark: The converse of lemma is not true. That is, suppose P, T, I and J are selfmaps of a S-metric space (X,
S) satisfying condition (i) and (ii) of Lemma 2.3.2. Even, if for each xo € X and for each associated sequence {xn}
of x¢ relative to P, T, I and J the sequence Pxo, Txi1, Px», TX3, ....., PXon, TXont1, ..... converges in X, then (X, S) need
not complete.

2. 3.3 Theorem: Suppose (X, S) is a S-metric space satisfying conditions (i) to (iv) of Theorem 2. 1. Further, if
v)' (X, S) is complete

then P, T, I and J have a unique common fixed point z € X. Also z is the unique common fixed point for the pair P
and I; and for the pair T and J.

Proof: In view of Lemma 2.3.1 the condition (v) of Theorem 2.1 holds; because of (v)'.

Hence the Theorem follows from Theorem 2.1.

2.3.4 Corollary ([5]): Let P, T, I and J be selfmaps of a metric space (X, d) satisfying the conditions:
6] P(X) € J(X) and T(X) < I(X)
(i1) d(Px, Ty) < cpo(x,y)) forallx,y € X,
where 0 <c <1 and
(i1)' po(x, y) = max {d(Ix, Jy), d(Ix, Px), d(Jy, Ty)} for x,y € X

(iii) one P, T, I and J is continuous,
and

(ivy PI=IPand TJ=JT
Further, if

() X is complete

Then the four selfmaps P, T, I and J have a unique common fixed point in z € X. Further z is the unique common
fixed point of P and I; and of T and J.
Proof: Given (X, d) is a metric space satisfying condition (i) to (v) of the corollary. If S(x, y, z) = max{d(x, y),
d(y, z), d (z, x)} then (X, S) is a S-metric space and
S(x, y, x) = d(x, y). Therefore condition (ii) can be written as S(Px, Ty, Ty) <c. w(x, y) for all x, y € X where u(x,y)
= max {S(Ix, Jy, Jy), S(Ix, Px, Px), S(Jy, Ty, Ty)} which is the same as condition (ii) of Theorem 2.3.3. Also since
(X, d) is complete, we have (X, S) is complete by Corollary1.14.

Now P, T, I and J are selfmaps on (X, S) satisfying conditions of Theorem 2.3.3 and hence the corollary

follows.
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