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Abstract 

Suppose (X, S) is a S- metric space and P, T, I and J are selfmaps of X. If these four maps and the space X satisfy 

certain conditions, we shall prove that they have a unique common fixed point in this paper. As a consequence we 

deduce a common fixed point theorem for four selfmaps of a complete S- metric space. Further, we show that a 

common fixed point theorem for four selfmaps of a metric space proved by Brain Fisher ([5]) follows as a particular 

case of the theorem. 

Mathematics Subject Classification: 47H10, 54H25. 

Key Words: S-metric space; Associated sequence; Fixed point theorem 

1. Introduction and Preliminaries: 

       One of the fields that many researchers are actively studying is fixed point theory, particularly in analysis. Fixed 

point theory can be applied in a variety of fields, including biology, computer science, engineering, economics, etc. 

The Banach Contraction Principle is known as one of the most important findings in fixed point theory. 

        On the other hand, some authors are interested and have tried to give generalizations of metric spaces in different 

ways. In 1963 Gahler [6] gave the concepts of 2- metric space further in 1992 Dhage [2] modified the concept of 2- 

metric space and introduced the concepts of D-metric space also proved fixed point theorems for selfmaps of such 

spaces. Later researchers have made a significant contribution to fixed point of D- metric spaces in [1], [3], and [4]. 

Unfortunately almost all the fixed point theorems proved on D-metric spaces are not valid in view of papers [7], [8] 

and [9].  Sedghi et al. [10] modified the concepts of D- metric space and introduced the concepts of D*- metric space 

also proved a common fixed 

point theorems in D*- metric space. 

       Recently, Sedghi et al [11] introduced the concept of S- metric space which is different from other space and 

proved fixed point theorems in S-metric space. They also gives some examples of S- metric spaces which shows that 

S- metric space is different from other spaces. In fact they gives following concepts of S- metric space. 

 

Definition 1.1 ([11]): Let X be a non-empty set. An S-metric space on X is a function             S: X3 → [0, ∞) that 

satisfies the following conditions, for each x, y, z, a ∈ X 

(i) S(x, y, z) ≥ 0  

(ii) S(x, y, z) = 0 if and only if x = y = z. 

(iii) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S (z, z, a)    

The pair (X, S) is called an S–metric space. 

Immediate examples of such S-metric spaces are: 

 

Example 1.2: Let ℝ be the real line. Then S(x, y, z) = |x – y| + |y – z| + |z – x| for each           

  x, y, z ∈ℝ is an S-metric on ℝ. This S-metric is called the usual S-metric on ℝ.  

 

Example 1.3:  Let X = ℝ2, d be the ordinary metric on X.  

Put S(x, y, z) = d(x, y) + d(y, z) + d (z, x) is an S- metric on X. If we connect the points x, y, z by a line, we have a 

triangle and if we choose a point a mediating this triangle then the inequality S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S (z, 

z, a) holds. In fact   
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S(x, y, z) = d(x, y) + d(y, z) + d (z, x) 

                ≤ d(x, a) + d(a, y) + d (y, a) + d(a, z) + d(z, a) + d (a, x) 

                = S(x, x, a) + S(y, y, a) + S (z, z, a) 

 

Example 1. 4: Let X = ℝn and || . || a norm on X, then S(x, y, z) = ||x – z|| + ||y – z|| is an S-metric on X.  

 

Remark 1. 5: it is easy to see that every D*-metric is S-metric, but in general the converse is not true, see the following 

example. 

 

 Example 1. 6:  Let X = ℝn and || . || a norm on X, then S(x, y, z) = ||y + z – 2x|| + ||y – z|| is an S-metric on X, but it 

is not D*-metric because it is not symmetric. 

 

Lemma 1. 7: In an S–metric space, we have S(x, x, y) = S(y, y, x). 

Proof: By the third condition of S-metric, we get 

  S(x, x, y) ≤ S(x, x, x) + S(x, x, x) + S(y, y, x) = S(y, y, x)…… (1) 

  and similarly 

S(y, y, x) ≤ S(y, y, y) + S(y, y, y) + S(x, x, y) = S(x, x, y)…… (2) 

Hence, by (1) and (2), we obtain S(x, x, y) = S(y, y, x). 

 

Definition 1.8: Let (X, S) be an S-metric space. For x ∈X and r > 0, we define the open ball BS(x, r) and closed ball 

BS[x, r] with a center x and a radius r as follows                                     

                        BS(x, r) = {y ∈ X; S(x, y, y) < r}  

                        BS[x, r] = {y ∈ X; S(x, y, y) ≤ r} 

For example, Let X =ℝ. Denote S(x, y, z) = | y + z – 2x | + | y – z | for all x, y, z ∈ℝ. Therefore BS(1, 2) = {y ∈ℝ ; 

S(y, y, 1) < 2} 

                  = {y∈ℝ ; | y – 1|< 1} = (0, 2). 

 

Definition 1.9: Let (X, S) be an S–metric space and A ⊂ X.  

1) If for every x ∈ A, there is a r > 0 such that BS(x, r) ⊂ A, then the subset A called an open subset of X 

2) If there is a r > 0 such that S(x, x, y) < r for all x, y ∈ A then A is said to be S–bounded. 

3) A sequence {xn} in X converge to x if and only if S(xn, xn, x) → 0 as n →∞. That is for each ∈ > 0, there 

exists n0 ∈ ℕ such that for all n ≥ n0, S(xn, xn, x) < ∈ and we denote this by lim
n →∞

xn = x  

4) A sequence {xn} in X is called a Cauchy sequence if for each ∈ > 0, there exists n0 ∈ ℕ such that S(xn, xn, 

xm) < ∈ for each m , n ≥ n0   

5) The S–metric space (X, S) is said to be complete if every Cauchy sequence is convergent sequence. 

6) Let τ be the set of all A ⊂ X with x ∈ A if and only if there exists r > 0 such that BS(x, r)⊂A. Then τ is a 

topology on X (induced by the S-metric S).                

7) If (X, τ) is a compact topological space we shall call (X, S) is a compact S–metric space. 

 

Lemma 1. 10 ([11]): Let (X, S) be an S-metric space. If r > 0 and x ∈ X, then the open ball BS(x, r) is an open subset 

of X. 

 

Lemma 1. 11 ([11): Let (X, S) be an S-metric space. If the sequence {xn} in X converges to x,  then x is unique. 

 

Lemma 1. 12 ([11]): Let (X, S) be an S-metric space. If the sequence {xn} in X converges to x, then {xn} is a Cauchy 

sequence.  

 

Lemma 1. 13 ([11]): Let (X, S) be an S-metric space. If there exists sequences {xn} and {yn} such that lim
n →∞

xn = x 

and lim
n →∞

yn = y, then  lim
n→∞

S(xn,xn,yn) = S(x, x, y). 
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Lemma 1. 14: Let (X, d) be a metric space. Then we have  

1. Sd(x, y, z) = d(x, y) + d(y, z) + d(z, x) for all x, y, z ∈ X is an S-metric on X 

2. xn → x in (X, d) if and only if Xn → x in (X, Sd) 

3. {xn} is a Cauchy sequence in (X, d) if and only if {xn} is a Cauchy sequence in (X, Sd) 

4. (X, d) is complete if and only if (X, Sd) is complete                                                             

 

Proof: (1) See [ Example (3), Page 260] 

(2) xn → x in (X, d) if and only if d(xn, x) → 0, if and only if Sd(xn, xn, x) = 3d(xn, x) → 0 that is, xn → x in (X, Sd) 

(3)  {xn}is a Cauchy in  (X, d) if and only if d(xn, xm) → 0 as n, m → ∞, if and only if       Sd(xn, xn, xm) = 3d(xn, xm) 

→ 0 n, m → ∞,  that is, {xn} is Cauchy in (X, Sd) 

(4) It is a direct consequence of (2) and (3) 

 

Notation: For any selfmap T of X, we denote T(x) by Tx.  

If P and Q are selfmaps of a set X, then any z ∈ X such that Pz = Qz = z is called a common fixed point of P and Q. 

Two selfmaps P and Q of X are said to be commutative if PQ = QP where PQ is their composition PoQ defined by 

(PoQ) x = PQx for all x ∈ X. 

 

             Definition 1.15: Suppose P and Q are selfmaps of a S–metric space (X, S) satisfying the condition Q(X) ⊆ P(X). Then 

for any x0 ∈ X, Qx0 ∈ Q(X) and hence Qx0 ∈ P(X), so that there is a x1 ∈ X with Qx0 = Px1, since Q(X) ⊆ P(X). Now 

Qx1 ∈ Q(X) and hence there is a x2 ∈ X with Qx2 ∈ Q(X) ⊆ P(X) so that Qx1 = Px2.  Again Qx2 ∈ Q(X) and hence Qx2 

∈ P(X) with Qx2 = Px3. Thus repeating this process to each x0 ∈ X, we get a sequence {xn} in X such that Qxn = Pxn+1 

for n ≥ 0. We shall call this sequence as an associated sequence of x0 relative to the two selfmaps P and Q. It may 

be noted that there may be more than one associated sequence for a point x0 ∈ X relative to selfmaps P and Q. 

    Let P and Q are selfmaps of a S-metric space (X, S) such that Q(X) ⊆ P(X). For any xo ϵ X, if {xn} is a sequence in 

X such that  Qxn = Pxn+1 for  n ≥ 0, then {xn} is called an associated sequence of x0 relative to the two selfmaps P 

and Q.  

Definition 1.16: A function Ø: [0, ∞) → [0, ∞) is said to be a contractive modulus, if            Ø (0) = 0 and Ø (t) < t 

for t > 0. 

Definition 1.17: A real valued function Ø defined on X ⊆ ℝ is said to be upper semi continuous, if lim
𝑛→∞

sup Ø(𝑡n) 

≤ Ø (t) for every sequence {tn} in X with tn → t as n → ∞. 

Definition 1.18: If P and Q are selfmaps of a S-metric space (X, S) such that for every sequence {xn} in X with 

lim
𝑛→∞

𝑃𝑥n = lim
𝑛→∞

𝑄𝑥n = t, we have  

lim
𝑛→∞

𝑆(PQxn, QPxn, QPxn) = 0, then we say that P and Q are compatible. 

 

The Main Results: 

2. 1 Theorem: Let P, T, I and J be selfmaps of a S- metric space (X, S) satisfying the conditions 

(i)    P(X) ⊆ J(X) and T(X) ⊆ I(X)  

(ii)    S(Px, Ty, Ty) ≤ Ø (μ(x, y)) for all x, y ∈ X 

   where Ø is an upper semi continuous and contractive modulus  

    and 

(ii)ʹ μ(x, y) = max {S(Ix, Jy, Jy), S(Ix, Px, Px), S(Jy, Ty, Ty)} for all x, y ∈ X 

(iii) one of P, T, I and J is continuous 

and 

(iv)  the pairs (P, I) and (T, J)  are compatible 

       Further, if 

(iv) there exists a point x0 ∈X and an  associated sequence {xn} relative to the four selfmaps  such that Px0, Tx1, 

Px2, Tx3, ….., Px2n, Tx2n+1, ….. converge to some z ∈ X,  
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Then P, T, I and J have a unique common fixed point z ∈ X. Also z is the unique common fixed point for the pair P 

and I; and for the pair T and J. 

Before we give proof of theorem, we establish some lemmas. 

1.1. 1 Lemma: Suppose P, T, I and J are selfmaps of a S-metric space satisfying the conditions (i), (ii), and (v) of 

theorem 2.1 and pair (P, I) is compatible. Then  

(a) limn→∞ μ(Ix2n, x2n+1 )  = S(Iz, z, z) whenever I is continuous 

and 

(b) limn→∞ μ(Px2n, x2n+1 )  = S(Pz, z, z)  whenever P is continuous 

Proof: In view of (v), the sequences {Px2n} and {Tx2n+1} converge to z ∈ X and since    Px2n = Jx2n+1 and Tx2n+1 

= Ix2n+2 we have 

(2. 1. 2) Px2n, Tx2n+1, Ix2n, Jx2n+1 → z as n → ∞. 

  (a)   If I is continuous, then we have 

(2.1.3)  I2x2n → Iz, IPx2n→ Iz as n → ∞ 

         Also compatible of the pair (P, I) implies  

(2.1.4) lim
n→∞

S(PIx2n, IPx2n, IPx2n) = 0 

From (2. 1. 3) and (2. 1. 4), we get that 

(2.1.5)  PIx2n → Iz as n→ ∞. 

Now, from (ii)ʹ, we have  

(2. 1. 6) μ(Ix2n, x2n+1) = max{S(I2x2n, Jx2n+1, Jx2n+1), S( I2x2n, SIx2n, SIx2n),                                                              

                                                                                    S(Jx2n, Tx2n+1, Tx2n+1)} 

Letting  n to ∞ in (2. 1. 6) and using the continuity of S, (2. 1. 2), (2. 1. 3) and (2. 1. 5) we get 

 limn→∞ μ(Ix2n, x2n+1 )  = max {S(Iz, z, z), S(Iz, z, z), S(z, z, z)} 

                                        = S(Iz, z, z). 

This proves part (a) of the lemma.  

(b) If P is continuous, then, by (2. 1. 2), we have 

(2. 1. 7) P2x2n → Pz, PIx2n→ Pz as n → ∞. 

and therefore in view of (2. 1. 4) we get 

(2. 1. 8)  IPx2n → Pz  as n→ ∞. 

Now we have 

(2. 1. 9) μ(Px2n, x2n+1) = max {S(IPx2n,  Jx2n+1, Jx2n+1 ),  S(IPx2n,  P2x2n,  P2x2n),                                                                           

                                                                                        S(Jx2n+1,  Tx2n+1, Tx2n+1)} 

In which on letting n to ∞ and using (2. 1. 2), (2. 1. 7), (2. 1. 8) and continuity of S we get limn→∞ μ(Px2n, x2n+1 )  = 

max {S(Pz, z, z), S(Pz, z, z), S(z, z, z)} 

                                         = S(Pz, z, z). proving part (b) of the lemma. 

(2. 1. 10) Lemma:  Suppose P, T, I and J are selfmaps of a S- metric space(X, S) satisfying the conditions (i), (ii), 

and (v) of theorem 2.1 and pair (T, J) is compatible. Then 

(a) limn→∞ μ(x2n, Jx2n+1 )  = S(z, Jz, Jz) whenever J is continuous 

and 

(b) limn→∞ μ(x2n, Tx2n+1 )   = S(z, Tz, Tz)  whenever T is continuous 

Proof: (a)   If I is continuous, then we have, in view of (2. 1. 2) that 

(2.1.11)  J2x2n → Jz, JTx2n+1→ Jz as n → ∞ 

         Also the pair (T, J) is compatible implies that  

(2.1.12)  lim
n→∞

S(TJx2n+1, JTx2n+1, JTx2n+1) = 0 

From (2. 1. 11) and (2. 1. 12), we get that 

(2.1.13)  TJx2n+1 → Jz as n→ ∞. 

Now, from (ii)ʹ, we have  

(2. 1. 14) μ(x2n, Jx2n+1) = max {S(Ix2n, J2x2n+1, J2x2n+1),  S( Ix2n, Px2n, Px2n),                                                                   

                                                                                       S(Jx2n+1,  TJx2n+1, TJx2n+1)} 
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 in which on letting n to ∞;   using the continuity of S and  (2. 1. 2), (2. 1. 11) and (2. 1. 13) we get      

limn→∞ μ(x2n, Jx2n+1 )  = max {S(z, Jz, Jz), S(z, z, z), S(Jz, Jz, Jz)} 

                                                        = S(z, Jz, Jz). 

(b)  When T is continuous, we have, by (2. 1. 2), that  

(2. 1. 15) T2x2n+1 → Tz,   TJx2n+1→ Tz as n → ∞. 

 from (2. 1. 15) and  (2. 1. 12), we get 

(2. 1. 16) JTx2n+1 → Tz  as n→ ∞. 

Now we have 

 (2. 1. 17) μ(x2n, Tx2n+1) = max {S(Ix2n, JTx2n+1, JTx2n+1),  S( Ix2n, Px2n, Px2n),                                                                      

                                                                                            S(JTx2n+1, T2x2n+1, T2x2n+1)} 

In which on letting n to ∞; using (2. 1. 2), (2. 1. 15), (2. 1. 16) and continuity of S we get limn→∞ μ(x2n, Tx2n+1 )  = 

max {S(z, Tz, Tz), S(z, z, z), S(Tz, Tz, Tz)} 

                                  = S(z, Tz, Tz).  

Hence the lemma. 

 

2. 2 Prof of Theorem 2. 1: In this section we first prove the existence of a common fixed point in various cases of 

the condition (iii) in Theorem 2. 1. 

Case(I). Suppose that I is continuous  

Taking x = Ix2n and y = x2n+1, in condition (ii) of the Theorem 2. 1, we have                               

 (2. 2. 1) S(PIx2n, Tx2n+1, Tx2n+1) ≤  Ø (μ(Ix2n, x2n+1)). 

Also the continuity of S gives  

S(Iz, z, z) = lim
n→∞

S(PIx2n,  Tx2n+1, Tx2n+1)  

Therefore, by Lemma 2. 1. 1, we get  

(2. 2. 2) S(Iz, z, z) = lim
n→∞

sup S(PIx2n,  Tx2n+1, Tx2n+1)  

                                  ≤ lim
n→∞

sup Φ( μ(Ix2n, x2n+1) 

                                  = Φ ( lim
n→∞

sup( μ(Ix2n, x2n+1) 

                                  = Φ ( lim
n→∞

( μ(Ix2n, x2n+1) 

                                  = Φ (S(Iz, z, z)) 

Thus  

(2. 2. 3) S(z, Iz, Iz) ≤ Φ(S(z, Iz, Iz)) 

Now we claim that Iz = z. In fact if Iz ≠ z,  S(z, Iz, Iz) > 0 so that 

Φ (S(Iz, z, z)) ˂ S(Iz, z, z), since Φ is contractive modulus, which contradicts (2. 2. 3). Therefore Iz = z. 

Now the continuity of S gives 

S(Pz, z, z) = lim
n→∞

S(Pz,   Tx2n+1, Tx2n+1) 

                 = lim
n→∞

supS(Pz,   Tx2n+1, Tx2n+1) 

 using the condition (ii) of Theorem (2. 1) and upper semi continuity of Φ in the above we get  

(2. 2. 4) S(Pz, z, z) ≤ lim
n→∞

supΦ(μ(z,   x2n+1 )  

                                  = Φ ( lim
n→∞

sup(μ(z,   x2n+1 )) 

                                  = Φ ( lim
n→∞

(μ(z,   x2n+1 ))  

 

But 

   limn→∞ μ(x2n, x2n+1 )  = lim
n→∞

max {S(Iz, Jx2n+1, Jx2n+1),  S(Iz, Sz, Sz),  

                                                                                      S(Jx2n+1, Tx2n+1, Tx2n+1)} 

                                         = max {S(Iz, z, z), S(Iz, Pz, Pz), S(z, z, z)} 

        since Iz = z,  Jx2n+1 → z and Tx2n+1 → z  as n→ ∞. Therefore (2. 2. 4) gives 

(2. 2. 5) S(Pz, z, z) ≤ Φ(S(Pz, z, z)) 
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Now we claim that Pz = z. In fact if Pz ≠ z, S(Pz, z, z) > 0 and by the definition of so that Φ we get Φ (S(Pz, z, z)) ˂ 

S(Pz, z, z), contradicting  (2. 2. 5). Hence Pz = z. 

Thus we have Pz = Iz = z. 

Now, since P(X) ⊆ J(X), there is a u ∈ X with z = Pz = Ju, for some u ∈ X and we have         

 Pz = Iz = Ju = z. We claim that Tu = z. 

In fact if Tu ≠ z, then S(z, Tu, Tu) > 0 and therefore by (ii) of Theorem 2. 1 we get 

S(z, Tu, Tu) = S(Pz, Tu, Tu) ≤ Φ(μ(z, u)) 

                    = Φ (max {S(Iz, Ju, Ju), S(Iz, Pz, Pz), S(Ju, Tu, Tu)}. 

                    = Φ(S(z, Tu, Tu)). 

     since Iz = z = Pz = Ju, and this implies 

S(z, Tu, Tu) ≤ Φ (S(z, Tu, Tu)) ˂ S(z, Tu, Tu), which is a contradiction. Therefore z = Tu. 

Hence we have z = Pz = Iz = Ju = Tu. Now taking yn =u for n ≥ 1, it follows that Tyn→Tu = z and Jyn  → Ju = z as n 

→ ∞. Also since the pair (T, J) is compatible we have 

lim
n→∞

S(TJyn,  JTyn, JTyn) = 0, which gives S(TJu, JTu, JTu) = 0 or TJu =JTu that is Tz =Jz. Now by condition (ii) of 

Theorem 2. 1 we have 

(2. 2. 6) S(z, Tz, Tz) = S(Pz, Tz, Tz) ≤ Φ(μ(z, z)) 

                                  = Φ (max {S(Iz, Jz, Jz), S(Iz, Pz, Pz), S(Jz, Tz, Tz)}. 

                                  = Φ (S(z, Tz, Tz)). 

      since Iz = z = Pz = Ju and Jz = Tz. Thus (2. 2. 6) gives  

S(z, Tz, Tz) ≤ Φ (S(z, Tz, Tz)); which, as before, forces Tz = z. 

Hence z = Pz = Iz = Jz = Tz. Thus z is a common fixed point of P, T, I and J. 

Case (ii): Suppose that J is continuous  

Taking x = x2n and y = Jx2n+1, in condition (ii) of the Theorem 2. 1, we have                           

 (2. 2. 7) S(Px2n, TJx2n+1, TJx2n+1)  ≤  Ø (μ(x2n, Jx2n+1)) in which letting n → ∞, and using the facts  Px2n → z and 

TJx2n+1 → Jz  as n→ ∞(since the pair (T, J) is compatible and J is continuous), we get   

(2. 2. 8) S(z, Jz, Jz) = lim
n→∞

S(Px2n,  TJx2n+1, TJx2n+1)   

                                = lim
n→∞

sup S(Px2n,  TJx2n+1, TJx2n+1)   

                                ≤ lim
n→∞

supΦ( μ(x2n,   Jx2n+1)  

                                = Φ ( lim
n→∞

sup( μ(x2n,   Jx2n+1)  

                                = Φ ( lim
n→∞

( μ(x2n,   Jx2n+1)  

Now, in view of (a) of Lemma 2. 1. 10, we get 

 S(z, Jz, Jz) ≤ Φ(S(z, Jz, Jz)), which leads to a contradiction if Jz ≠ z. Therefore Jz = z.  

Now the continuity of S gives 

S(z, Tz, Tz) = lim
n→∞

S(Px2n,   Tz,   Tz)  

                      = lim
n→∞

supS(Px2n,   Tz,   Tz)  

     But, condition (ii) of Theorem (2. 1) and upper semi continuity of Φ give  

(2. 2. 9) S(z, Tz, Tz) ≤ lim
n→∞

supΦ(μ(x2n,   z)   

                                  = Φ ( lim
n→∞

sup(μ(x2n,   z)) 

                                  = Φ ( lim
n→∞

(μ(x2n,   z))  

 Now since μ(x2n, z) → S(z, Tz, Tz) as n→ ∞ from condition (ii) of Theorem 2. 1. and since Φ is a contractive 

modulus,(2. 2. 9) gives S(z, Tz, Tz) ≤ Φ(S(z, Tz, Tz)), from which we get a, contradiction  if Tz ≠ z. Therefore Tz = 

z. 

Hence we have  

(2. 2. 10) Tz = Jz = z. 

Now, since T(X) ⊆ I(X), there is a ú  ∈X with z = Tz = Iuʹ,  

Again by condition (ii) of Theorem 2. 1 we get 

(2. 2. 11) S(Puʹ,  z,  z) = S(Puʹ,  Tz, Tz) ≤ Φ(μ(uʹ, z)) 
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                                    = Φ (max {S(Iuʹ, Jz, Jz), S(Iuʹ, Puʹ, Puʹ),  S(Jz, Tz, Tz)}. 

                                    = Φ (S(Suʹ, z, z)). 

      since Jz = Tz = z = Iuʹ. That is  

S(Puʹ, z, z) ≤ Φ (S(Puʹ, z, z)), which is a contradiction if Puʹ ≠ z.  Therefore z = Puʹ, 

That is, Puʹ = Iuʹ =z. Taking yn = uʹ for n ≥ 1, we find that Pyn → Puʹ and Iyn  → Iuʹ as n → ∞. Now using the 

compatibility of the pair (P, I) we have 

lim
n→∞

S(PIyn,  IPyn, IPyn) = 0, which gives S(PIuʹ, IPuʹ, IPuʹ) = 0 or PIuʹ = IPuʹ.                

Hence Sz = Iz.  Again by condition (ii) of Theorem 2. 1 we have 

(2. 2. 12) S(Pz, z, z) = S(Pz, Tz, Tz) ≤ Φ(μ(z, z)) = Φ(S(Pz, z, z)).                                        Since μ(z, z) = S(Pz, z, z). 

Now (2. 2. 13) leads to a contradiction if Pz ≠ z. Therefore Pz = z.  Hence z = Pz = Iz = Jz = Tz, showing that z is a 

common fixed point of P, T, I and J. 

Case (iii): Suppose that P is continuous  

Taking x = Px2n and y = x2n+1, in condition (ii) of the Theorem 2. 1, we have                           

(2. 2. 13) S(P2x2n, Tx2n+1, Tx2n+1)  ≤  Ø (μ(Px2n, x2n+1)). 

Since P2x2n → Pz as n → ∞ (by the continuity of P)  T x2n+1 → z as n → ∞, letting n → ∞ in (2. 2. 13), we get   

(2. 2. 14) S(Pz, z, z) = lim
n→∞

sup S(P2x2n,  Tx2n+1, Tx2n+1)                                                                                                 

                                 = lim
n→∞

sup S(P2x2n,  Tx2n+1, Tx2n+1) 

                                  ≤ lim
n→∞

supΦ( μ(Px2n,   x2n+1))  

                                  = Φ ( lim
n→∞

sup( μ(Sx2n,   x2n+1)  

                                  = Φ ( lim
n→∞

( μ(Px2n, x2n+1). 

Now, in view of (b) of  Lemma 2. 1. 1,  (2. 2. 14) gives 

 S(Pz, z, z) ≤ Φ(S(Pz, z, z)), which is a contradiction  if Pz ≠ z, by the definition of Φ.  Therefore Pz = z. 

Now, since P(X) ⊆ J(X), there is a v ∈ X with z = Pz = Jv,  

Now the continuity of S gives 

S(z, Tv, Tv) = lim
n→∞

S(Px2n,   Tv,  Tv)  

                     = lim
n→∞

supS(Px2n, Tv,   Tv) 

so that condition (ii) of Theorem 2. 1 and upper semi continuity of Φ give 

(2. 2. 15) S(z, Tv, Tv) ≤ lim
n→∞

supΦ(μ(x2n,   v)  

                                      = Φ ( lim
n→∞

sup(μ(x2n,   v)) 

                                      = Φ ( lim
n→∞

(μ(x2n,   v))  

Since μ(x2n, v) → S(z, Tv, Tv), as n→ ∞ (from condition (ii) of Theorem 2. 1, (2. 2. 15) gives S(z, Tv, Tv) ≤ Φ(S(z, 

Tv, Tv), from which we get a contradiction  if z ≠ Tv. Therefore z = Tv 

Thus we have Tv = Jv = z. 

Now taking yn = v for n ≥ 1, we get Tyn → Tv and Jyn  → Jv as    n → ∞. Also since the pair (T, J) compatibility   we 

have 

lim
n→∞

S(TJyn,  JTyn, JTyn) = 0, which gives S(TJv, JTv, JTv) = 0 or TJv =JTv, hence Tz = Jz  

Now the continuity of S gives 

S(z, Tz, Tz) = lim
n→∞

S(Px2n,   Tz,   Tz)  

                    = lim
n→∞

supS(Px2n,   Tz,   Tz)  

But, condition (ii) of Theorem (2. 1) and upper semi continuity of Φ give  

(2. 2. 16) S(z, Tz, Tz) ≤ lim
n→∞

supΦ(μ(x2n,   z)   

                                    = Φ ( lim
n→∞

sup(μ(x2n,   z)) 

                                    = Φ ( lim
n→∞

(μ(x2n,   z))  

  Since μ (x2n, z) → S(z, Tz, Tz) as n→ ∞ from condition (ii) of Theorem 2.1, (2. 2. 16) gives S(z, Tz, Tz) ≤ Φ(DS(z, 

Tz, Tz)), and this leads to a contradiction  if Tz ≠ z. Hence Tz = z. 

Also since T(X) ⊆ I(X) implies there is a uʹʹϵ X with z = Tz = Iuʹʹ.  Now from condition(ii) of Theorem 2. 1, we have 
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(2. 2. 17) S(Puʹʹ, z, z) = S(Puʹʹ, Tz, Tz) ≤ Φ(μ(uʹʹ, z)) 

           Since μ(uʹʹ, z) = S(Puʹʹ, Tz, Tz), from (ii)ʹ  of Theorem 2. 1,  (2. 2. 17) gives  

      S(Puʹʹ, z, z) ≤ Φ (S(Puʹʹ, z, z)), and this will be a contradiction if Puʹʹ ≠ z.  Therefore  

z = Puʹʹ. Hence Puʹʹ = Iúʹʹ = z.  Also, since the pair (P, I) is compatible, we have              lim
n→∞

S(PIyn,  IPyn, IPyn) = 0.  

Taking yn = uʹʹ for n ≥ 1, we get S(PIuʹʹ, IPuʹʹ, IPuʹʹ) = 0. Therefore PIuʹʹ =IPuʹʹ or Pz = Iz.  Hence z = Pz = Iz = Jz = 

Tz, showing that z is a common fixed point of P, T, I and J. 

Case(iv): Finally suppose that T is continuous  

Taking x = x2n and y = Tx2n+1, in condition (ii) of the Theorem 2. 1, we have                          

(2. 2. 18) S(Px2n, T2x2n+1, T2x2n+1)  ≤  Ø (μ(x2n, Tx2n+1)). 

Since Px2n →z and T2 x2n+1 → Tz as n → ∞(by the continuity of T) letting n to  ∞ in  (2. 2.18)  we get   

(2. 2. 19) S(z, Tz, Tz) = lim
n→∞

sup S(Px2n,  T2x2n+1, T
2x2n+1)                                                                                           

    = lim
n→∞

sup S(Px2n, T2x2n+1, T
2x2n+1) 

                                    ≤ lim
n→∞

supΦ( μ(x2n, Tx2n+1)  

                                   = Φ ( lim
n→∞

sup( μ(x2n, Tx2n+1 )  

                                   = Φ ( lim
n→∞

( μ(x2n,   Tx2n+1). 

Which, in view of (b) of  Lemma 2. 1. 1, (2. 2. 10) gives 

 S(z, Tz, Tz) ≤ Φ(S(z, Tz, Tz)), and this will be  contradiction  if Tz ≠ z, by the defination of Φ.  Therefore Tz = z. 

Now, since T(X) ⊆ I(X), there is a vʹ ϵ X with z = Tz = Ivʹ,  

Now the continuity of S gives 

S(Pvʹ, z, z) = lim
n→∞

S(Pvʹ,   Tx2n+1,  Tx2n+1)   

                     = lim
n→∞

supS(Pvʹ, Tx2n+1,   Tx2n+1) 

      Now condition (ii) of Theorem 2. 1 and upper semi continuity of Φ give 

(2. 2. 20) S(Pvʹ, z, z) ≤  lim
n→∞

sup Φ(μ(vʹ, x2n+1)) 

                                    = Φ ( lim
n→∞

sup(μ(vʹ,   x2n+1)) 

                                   = Φ ( lim
n→∞

(μ(vʹ,   x2n+1))  

Since μ(vʹ, x2n+1) → S(Pvʹ, z, z), as n→ ∞ (from condition (ii) of Theorem 2. 1),  (2. 2. 20) gives S(Svʹ, z, z) ≤ Φ(S(Pvʹ, 

z, z), and this leads to a contradiction if Svʹ≠z. Therefore Svʹ =z.  

Hence   Pvʹ = Ivʹ = z. 

Since the pair (P, I) is compatibility, we have lim
n→∞

S(PIyn,  IPyn, IPyn) = 0. 

 Taking yn = vʹ for n ≥ 1, we get S(PIvʹ, IPvʹ, IPvʹ) = 0                                                       (since Pyn →Pvʹ, Iyn  → Ivʹ 

as n → ∞). Therefore PIvʹ = IPvʹ or Pz = Tz.  

Now the continuity of S gives 

S(Pz, z, z) = lim
n→∞

S(Pz,   Tx2n+1,   Tx2n+1)  

                      = lim
n→∞

supS(Pz,   Tx2n+1,   Tx2n+1)  

     Again, by condition (ii) of Theorem 2. 1 and upper semi continuity of Φ gives 

(2. 2. 21) S(Pz, z, z) ≤ lim
n→∞

supΦ(μ(z,   x2n+1)   

                                  = Φ ( lim
n→∞

sup(μ(z,   x2n+1)) 

                                  = Φ ( lim
n→∞

(μ(z,   x2n+1) ) 

  Since μ (z, x2n+1) → S(Pz, z, z) as n→ ∞ from condition (ii) of Theorem 2.1,(2. 2. 21) gives S(Pz, z, z) ≤ Φ(S(Pz, z, 

z)), and this leads to a contradiction  if Pz ≠ z. Therefore Pz = z. Hence Pz = Iz = Tz = z 

 Now since P(X) ⊆ J(X), this  implies  there is a vʹʹϵ X with z = Pz = Jvʹʹ.  Now from condition (ii) of Theorem 2. 1, 

we have 

(2. 2. 22) S(z, Tvʹʹ, Tvʹʹ) = S(Pz, Tvʹʹ, Tvʹʹ) ≤ Φ(μ(z, vʹʹ)) 

           Since μ(z, vʹʹ) = S(z, Tvʹʹ, Tvʹʹ), from (ii)ʹ  of Theorem 2. 1,  (2. 2. 22) gives  
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      S(z, Tvʹʹ, Tvʹʹ) ≤ Φ (S(z, Tvʹʹ, Tvʹʹ)), and this will be a  contradiction if Tvʹʹ ≠ z.  Therefore z = Tvʹʹ. Hence Tvʹʹ = 

Jvʹʹ = z.  Also, since the pair (T, J) is compatible, we have lim
n→∞

S(TJyn,  JTyn, JTyn) = 0. Taking yn = vʹʹ for n ≥ 1, we 

get S(TJvʹʹ, JTvʹʹ, JTvʹʹ) = 0. Therefore TJvʹʹ =JTvʹʹ or Tz = Jz.  Therefore z = Pz = Iz = Jz = Tz. Hence z is a common 

fixed point of P, T, I and J. 

Now we prove the uniqueness of the common fixed point 

If possible let zʹ be another common fixed point of S, T, I and J. Then from condition (ii)  of Theorem 2. 1, we have 

(2. 2. 23) S(z, zʹ, zʹ) =S(Pz, Tzʹ, Tzʹ) ≤ Φ(μ(z, zʹ)). 

Since μ(z, zʹ) = S(z, zʹ, zʹ) from (ii)ʹ of Theorem 2. 1, (2. 2. 23) gives                                  

S(z, zʹ, zʹ) ≤ Φ(S(z, zʹ, zʹ)) and this will be contradiction if z ≠ zʹ. Therefore z = zʹ. Thus z is the unique common fixed 

point of P, T, I and J. 

 To prove that z is the unique common fixed point of P and I; and of T and J. Let w be another common fixed point 

of P and I. Then z = Pz = Tz = Iz = Jz and w = Iw = Pw.        

Now, from condition (ii) of  Theorem 2. 1, we have   

(2. 2. 24) S(z, w, w) = S(w, z, z) = S(Pw, Tz, Tz) ≤ Φ(μ(w, z)). 

Since μ(w, z) = S(w, z, z) (from (ii)ʹ of Theorem 2. 1), (2. 2. 24) gives 

S(w, z, z) ≤ Φ(S(w, z, z)), and this will be a contradiction if w ≠ z. Therefore w = z. Thus z is the unique common 

fixed point of P and I. Similarly we can prove that z is the unique common fixed point of T and J. Thus  the Theorem 

2. 1 is completely proved. 

 

2.3 A Common Fixed Point Theorem for Four Selfmaps of a Complete S- metric space:  

Before we prove the main result of this section, we prove the following lemma: 

 

2.3.1 Lemma: Let (X, S) be a S- metric space and P, T, I and J be selfmaps of X such that  

(i)    P(X) ⊆ J(X) and T(X) ⊆ I(X)  

(ii)   S(Px, Ty, Ty) ≤ c. μ(x, y) for all x, y ∈ X 

       where 0 ≤ c ˂ 1 and 

        μ(x, y) = max {S(Ix, Jy, Jy), S(Ix, Px, Px), S(Jy, Ty, Ty)}  

       Further, if 

(i)  (X, S) is complete. 

Then for any x0 ∈ X and for any of its associated sequence {xn} relative to the four selfmaps, such that Px0, Tx1, Px2, 

Tx3… ,Px2n, Tx2n+1, ….. converges to some z ∈ X.  

 

Proof: Suppose P, T, I and J are selfmaps of a S-metric space (X, S) for which the conditions (i) and (ii) hold. 

 Let x0 ∈ X and {xn} be an associated sequence of x0 relative to four  selfmaps. Then, since   Px2n = Jx2n+1 and Tx2n+1 

= Ix2n+2 for n ≥ 0. Note that  

μ(x2n, x2n+1) = max {S(Ix2n, Jx2n+1, Jx2n+1), S(Ix2n, Px2n, Px2n),  S(Jx2n, Tx2n+1, Tx2n+1)}                                       

                    = max {S(Ix2n, Px2n,  Px2n), S(Ix2n, Px2n, Px2n),  S(Jx2n+1, Tx2n+1, Tx2n+1)} 

                   = max {S(Ix2n, Px2n, Px2n), S(Jx2n+1, Tx2n+1, Tx2n+1)} 

μ(x2n, x2n+1) =  max { S(Tx2n-1, Px2n, Px2n),  S(Px2n, Tx2n+1, Tx2n+1)} 

This  together with (ii) of Theorem 2. 1 gives      

   S(Px2n, Tx2n+1, Tx2n+1)  ≤  c . μ(x2n, x2n+1)    

                                         ≤ c.  max { S(Tx2n-1, Px2n, Px2n),  S(Px2n, Tx2n+1, Tx2n+1)}. 

Since 0 ≤ c < 1, it follows from the above inequality that   

max { S(Tx2n-1, Px2n, Px2n),  S(Px2n, Tx2n+1, Tx2n+1)} = S(Tx2n-1, Px2n, Px2n) 

Therefore      S(Px2n, Tx2n+1, Tx2n+1) ≤ c. S(Tx2n-1, Px2n, Px2n) …….. (A) 

Similarly, we can prove 

                      S(Tx2n-1, Px2n, Px2n) ≤ c. S(Px2n-2, Tx2n-1, Tx2n-1) …….. (B) 

From (A) and (B), we get 

S(Px2n, Tx2n+1, Tx2n+1) ≤  c2   S(Px2n-2, Tx2n-1, Tx2n-1) 

                                       ≤ c4   S(Px2n-4, Tx2n-3, Tx2n-3) 

- - - - - - - - - - - - - - - - - - - -  
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- - - - - - - - - - - - - - - - - - - -  

                                       ≤ c2n   S(Px0,Tx1,Tx1) → 0 

 Since c2n → 0 as n → ∞ (because c < 1). Hence the sequence Px0, Tx1, Px2, Tx3,… Px2n, Tx2n+1 is a Cauchy 

sequence in (X, S) and since it is complete, it converges to a point say z ∈ X, proving lemma. 

 

2.3.2 Remark: The converse of lemma is not true. That is, suppose P, T, I and J are selfmaps of a S-metric space (X, 

S) satisfying condition (i) and (ii) of Lemma 2.3.2. Even,  if for each  x0 ∈ X and for each associated sequence  {xn} 

of x0 relative to P, T, I and J the sequence Px0, Tx1, Px2, Tx3, ….., Px2n, Tx2n+1, …..   converges in X, then (X, S) need 

not complete. 

 

2. 3. 3 Theorem: Suppose (X, S) is a S-metric space  satisfying conditions (i) to (iv) of Theorem 2. 1. Further, if 

(v)ʹ (X, S) is complete 

 then P, T, I and J have a unique common fixed point z ∈ X. Also z is the unique common fixed point for the pair P 

and I; and for the pair T and J.    

Proof:  In view of Lemma 2.3.1 the condition (v) of Theorem 2.1 holds; because of (v)'. 

Hence the Theorem follows from Theorem 2.1. 

 

2.3.4 Corollary ([5]):  Let P, T, I and J be selfmaps of a metric space (X, d) satisfying the conditions: 

(i)         P(X) ⊆ J(X) and T(X) ⊆ I(X) 

(ii)        d(Px, Ty)  ≤  c μ0 (x, y)) for all x, y ∈ X, 

             where 0 ≤ c < 1 and  

(ii)'        μ0(x, y) = max {d(Ix, Jy), d(Ix, Px), d(Jy, Ty)} for  x, y ∈ X 

(iii)        one P, T, I and J is continuous, 

              and 

(iv)       PI = IP and TJ = JT 

             Further, if 

(v)        X is complete 

          Then the four selfmaps P, T, I and J have a unique common fixed point in z ∈ X. Further z is the unique common 

fixed point of P and I; and of T and J. 

Proof:  Given (X, d) is a metric space satisfying condition (i) to (v) of the corollary. If         S(x, y, z) = max{d(x, y), 

d(y, z), d (z, x)} then (X, S) is a S-metric space and                        

S(x, y, x) = d(x, y). Therefore condition (ii) can be written as S(Px, Ty, Ty) ≤ c. μ(x, y) for all x, y ∈ X where  μ(x, y) 

= max {S(Ix, Jy, Jy), S(Ix, Px, Px), S(Jy, Ty, Ty)} which is the same as condition (ii) of Theorem 2.3.3. Also since 

(X, d) is complete, we have (X, S) is complete by Corollary1.14. 

  Now P, T, I and J are selfmaps on (X, S) satisfying conditions of Theorem 2.3.3 and hence the corollary 

follows.  
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